/*
* Copyright (c) 2006-2007 Erin Catto http:
*
* This software is provided 'as-is', without any express or implied
* warranty. In no event will the authors be held liable for any damages
* arising from the use of this software.
* Permission is granted to anyone to use this software for any purpose,
* including commercial applications, and to alter it and redistribute it
* freely, subject to the following restrictions:
* 1. The origin of this software must not be misrepresented; you must not
* claim that you wrote the original software. If you use this software
* in a product, an acknowledgment in the product documentation would be
* appreciated but is not required.
* 2. Altered source versions must be plainly marked, and must not be
* misrepresented the original software.
* 3. This notice may not be removed or altered from any source distribution.
*/
/**
* @class b2Collision
* @constructor
*/
var b2Collision = function () {
//
};
b2Collision.prototype = {
// Null feature
// Find the separation between poly1 and poly2 for a give edge normal on poly1.
// Find the max separation between poly1 and poly2 using edge normals
// from poly1.
// Find edge normal of max separation on A - return if separating axis is found
// Find edge normal of max separation on B - return if separation axis is found
// Choose reference edge(minA, minB)
// Find incident edge
// Clip
// The normal points from 1 to 2
};
b2Collision.b2_nullFeature = 0x000000ff;
b2Collision.ClipSegmentToLine = function(vOut, vIn, normal, offset)
{
// Start with no output points
var numOut = 0;
var vIn0 = vIn[0].v;
var vIn1 = vIn[1].v;
// Calculate the distance of end points to the line
var distance0 = b2Math.b2Dot(normal, vIn[0].v) - offset;
var distance1 = b2Math.b2Dot(normal, vIn[1].v) - offset;
// If the points are behind the plane
if (distance0 <= 0.0) vOut[numOut++] = vIn[0];
if (distance1 <= 0.0) vOut[numOut++] = vIn[1];
// If the points are on different sides of the plane
if (distance0 * distance1 < 0.0)
{
// Find intersection point of edge and plane
var interp = distance0 / (distance0 - distance1);
// expanded for performance
var tVec = vOut[numOut].v;
tVec.x = vIn0.x + interp * (vIn1.x - vIn0.x);
tVec.y = vIn0.y + interp * (vIn1.y - vIn0.y);
if (distance0 > 0.0)
{
vOut[numOut].id = vIn[0].id;
}
else
{
vOut[numOut].id = vIn[1].id;
}
++numOut;
}
return numOut;
};
b2Collision.EdgeSeparation = function(poly1, edge1, poly2)
{
var vert1s = poly1.m_vertices;
var count2 = poly2.m_vertexCount;
var vert2s = poly2.m_vertices;
// Convert normal from into poly2's frame.
//b2Settings.b2Assert(edge1 < poly1.m_vertexCount);
//var normal = b2Math.b2MulMV(poly1.m_R, poly1->m_normals[edge1]);
var normalX = poly1.m_normals[edge1].x;
var normalY = poly1.m_normals[edge1].y;
var tX = normalX;
var tMat = poly1.m_R;
normalX = tMat.col1.x * tX + tMat.col2.x * normalY;
normalY = tMat.col1.y * tX + tMat.col2.y * normalY;
// ^^^^^^^ normal.MulM(poly1.m_R);
//var normalLocal2 = b2Math.b2MulTMV(poly2.m_R, normal);
var normalLocal2X = normalX;
var normalLocal2Y = normalY;
tMat = poly2.m_R;
tX = normalLocal2X * tMat.col1.x + normalLocal2Y * tMat.col1.y;
normalLocal2Y = normalLocal2X * tMat.col2.x + normalLocal2Y * tMat.col2.y;
normalLocal2X = tX;
// ^^^^^ normalLocal2.MulTM(poly2.m_R);
// Find support vertex on poly2 for -normal.
var vertexIndex2 = 0;
var minDot = Number.MAX_VALUE;
for (var i = 0; i < count2; ++i)
{
//var dot = b2Math.b2Dot(vert2s[i], normalLocal2);
var tVec = vert2s[i];
var dot = tVec.x * normalLocal2X + tVec.y * normalLocal2Y;
if (dot < minDot)
{
minDot = dot;
vertexIndex2 = i;
}
}
//b2Vec2 v1 = poly1->m_position + b2Mul(poly1->m_R, vert1s[edge1]);
tMat = poly1.m_R;
var v1X = poly1.m_position.x + (tMat.col1.x * vert1s[edge1].x + tMat.col2.x * vert1s[edge1].y)
var v1Y = poly1.m_position.y + (tMat.col1.y * vert1s[edge1].x + tMat.col2.y * vert1s[edge1].y)
//b2Vec2 v2 = poly2->m_position + b2Mul(poly2->m_R, vert2s[vertexIndex2]);
tMat = poly2.m_R;
var v2X = poly2.m_position.x + (tMat.col1.x * vert2s[vertexIndex2].x + tMat.col2.x * vert2s[vertexIndex2].y)
var v2Y = poly2.m_position.y + (tMat.col1.y * vert2s[vertexIndex2].x + tMat.col2.y * vert2s[vertexIndex2].y)
//var separation = b2Math.b2Dot( b2Math.SubtractVV( v2, v1 ) , normal);
v2X -= v1X;
v2Y -= v1Y;
//var separation = b2Math.b2Dot( v2 , normal);
var separation = v2X * normalX + v2Y * normalY;
return separation;
};
b2Collision.FindMaxSeparation = function(edgeIndex /*int ptr*/, poly1, poly2, conservative)
{
var count1 = poly1.m_vertexCount;
// Vector pointing from the origin of poly1 to the origin of poly2.
//var d = b2Math.SubtractVV( poly2.m_position, poly1.m_position );
var dX = poly2.m_position.x - poly1.m_position.x;
var dY = poly2.m_position.y - poly1.m_position.y;
//var dLocal1 = b2Math.b2MulTMV(poly1.m_R, d);
var dLocal1X = (dX * poly1.m_R.col1.x + dY * poly1.m_R.col1.y);
var dLocal1Y = (dX * poly1.m_R.col2.x + dY * poly1.m_R.col2.y);
// Get support vertex hint for our search
var edge = 0;
var maxDot = -Number.MAX_VALUE;
for (var i = 0; i < count1; ++i)
{
//var dot = b2Math.b2Dot(poly.m_normals[i], dLocal1);
var dot = (poly1.m_normals[i].x * dLocal1X + poly1.m_normals[i].y * dLocal1Y);
if (dot > maxDot)
{
maxDot = dot;
edge = i;
}
}
// Get the separation for the edge normal.
var s = b2Collision.EdgeSeparation(poly1, edge, poly2);
if (s > 0.0 && conservative == false)
{
return s;
}
// Check the separation for the neighboring edges.
var prevEdge = edge - 1 >= 0 ? edge - 1 : count1 - 1;
var sPrev = b2Collision.EdgeSeparation(poly1, prevEdge, poly2);
if (sPrev > 0.0 && conservative == false)
{
return sPrev;
}
var nextEdge = edge + 1 < count1 ? edge + 1 : 0;
var sNext = b2Collision.EdgeSeparation(poly1, nextEdge, poly2);
if (sNext > 0.0 && conservative == false)
{
return sNext;
}
// Find the best edge and the search direction.
var bestEdge = 0;
var bestSeparation;
var increment = 0;
if (sPrev > s && sPrev > sNext)
{
increment = -1;
bestEdge = prevEdge;
bestSeparation = sPrev;
}
else if (sNext > s)
{
increment = 1;
bestEdge = nextEdge;
bestSeparation = sNext;
}
else
{
// pointer out
edgeIndex[0] = edge;
return s;
}
while (true)
{
if (increment == -1)
edge = bestEdge - 1 >= 0 ? bestEdge - 1 : count1 - 1;
else
edge = bestEdge + 1 < count1 ? bestEdge + 1 : 0;
s = b2Collision.EdgeSeparation(poly1, edge, poly2);
if (s > 0.0 && conservative == false)
{
return s;
}
if (s > bestSeparation)
{
bestEdge = edge;
bestSeparation = s;
}
else
{
break;
}
}
// pointer out
edgeIndex[0] = bestEdge;
return bestSeparation;
};
b2Collision.FindIncidentEdge = function(c, poly1, edge1, poly2)
{
var count1 = poly1.m_vertexCount;
var vert1s = poly1.m_vertices;
var count2 = poly2.m_vertexCount;
var vert2s = poly2.m_vertices;
// Get the vertices associated with edge1.
var vertex11 = edge1;
var vertex12 = edge1 + 1 == count1 ? 0 : edge1 + 1;
// Get the normal of edge1.
var tVec = vert1s[vertex12];
//var normal1Local1 = b2Math.b2CrossVF( b2Math.SubtractVV( vert1s[vertex12], vert1s[vertex11] ), 1.0);
var normal1Local1X = tVec.x;
var normal1Local1Y = tVec.y;
tVec = vert1s[vertex11];
normal1Local1X -= tVec.x;
normal1Local1Y -= tVec.y;
var tX = normal1Local1X;
normal1Local1X = normal1Local1Y;
normal1Local1Y = -tX;
// ^^^^ normal1Local1.CrossVF(1.0);
var invLength = 1.0 / Math.sqrt(normal1Local1X*normal1Local1X + normal1Local1Y*normal1Local1Y);
normal1Local1X *= invLength;
normal1Local1Y *= invLength;
// ^^^^normal1Local1.Normalize();
//var normal1 = b2Math.b2MulMV(poly1.m_R, normal1Local1);
var normal1X = normal1Local1X;
var normal1Y = normal1Local1Y;
tX = normal1X;
var tMat = poly1.m_R;
normal1X = tMat.col1.x * tX + tMat.col2.x * normal1Y;
normal1Y = tMat.col1.y * tX + tMat.col2.y * normal1Y;
// ^^^^ normal1.MulM(poly1.m_R);
//var normal1Local2 = b2Math.b2MulTMV(poly2.m_R, normal1);
var normal1Local2X = normal1X;
var normal1Local2Y = normal1Y;
tMat = poly2.m_R;
tX = normal1Local2X * tMat.col1.x + normal1Local2Y * tMat.col1.y;
normal1Local2Y = normal1Local2X * tMat.col2.x + normal1Local2Y * tMat.col2.y;
normal1Local2X = tX;
// ^^^^ normal1Local2.MulTM(poly2.m_R);
// Find the incident edge on poly2.
var vertex21 = 0;
var vertex22 = 0;
var minDot = Number.MAX_VALUE;
for (var i = 0; i < count2; ++i)
{
var i1 = i;
var i2 = i + 1 < count2 ? i + 1 : 0;
//var normal2Local2 = b2Math.b2CrossVF( b2Math.SubtractVV( vert2s[i2], vert2s[i1] ), 1.0);
tVec = vert2s[i2];
var normal2Local2X = tVec.x;
var normal2Local2Y = tVec.y;
tVec = vert2s[i1];
normal2Local2X -= tVec.x;
normal2Local2Y -= tVec.y;
tX = normal2Local2X;
normal2Local2X = normal2Local2Y;
normal2Local2Y = -tX;
// ^^^^ normal2Local2.CrossVF(1.0);
invLength = 1.0 / Math.sqrt(normal2Local2X*normal2Local2X + normal2Local2Y*normal2Local2Y);
normal2Local2X *= invLength;
normal2Local2Y *= invLength;
// ^^^^ normal2Local2.Normalize();
//var dot = b2Math.b2Dot(normal2Local2, normal1Local2);
var dot = normal2Local2X * normal1Local2X + normal2Local2Y * normal1Local2Y;
if (dot < minDot)
{
minDot = dot;
vertex21 = i1;
vertex22 = i2;
}
}
var tClip;
// Build the clip vertices for the incident edge.
tClip = c[0];
//tClip.v = b2Math.AddVV(poly2.m_position, b2Math.b2MulMV(poly2.m_R, vert2s[vertex21]));
tVec = tClip.v;
tVec.SetV(vert2s[vertex21]);
tVec.MulM(poly2.m_R);
tVec.Add(poly2.m_position);
tClip.id.features.referenceFace = edge1;
tClip.id.features.incidentEdge = vertex21;
tClip.id.features.incidentVertex = vertex21;
tClip = c[1];
//tClip.v = b2Math.AddVV(poly2.m_position, b2Math.b2MulMV(poly2.m_R, vert2s[vertex22]));
tVec = tClip.v;
tVec.SetV(vert2s[vertex22]);
tVec.MulM(poly2.m_R);
tVec.Add(poly2.m_position);
tClip.id.features.referenceFace = edge1;
tClip.id.features.incidentEdge = vertex21;
tClip.id.features.incidentVertex = vertex22;
};
b2Collision.b2CollidePolyTempVec = new b2Vec2();
b2Collision.b2CollidePoly = function(manifold, polyA, polyB, conservative)
{
manifold.pointCount = 0;
var edgeA = 0;
var edgeAOut = [edgeA];
var separationA = b2Collision.FindMaxSeparation(edgeAOut, polyA, polyB, conservative);
edgeA = edgeAOut[0];
if (separationA > 0.0 && conservative == false)
return;
var edgeB = 0;
var edgeBOut = [edgeB];
var separationB = b2Collision.FindMaxSeparation(edgeBOut, polyB, polyA, conservative);
edgeB = edgeBOut[0];
if (separationB > 0.0 && conservative == false)
return;
var poly1;
var poly2;
var edge1 = 0;
var flip = 0;
var k_relativeTol = 0.98;
var k_absoluteTol = 0.001;
// TODO_ERIN use "radius" of poly for absolute tolerance.
if (separationB > k_relativeTol * separationA + k_absoluteTol)
{
poly1 = polyB;
poly2 = polyA;
edge1 = edgeB;
flip = 1;
}
else
{
poly1 = polyA;
poly2 = polyB;
edge1 = edgeA;
flip = 0;
}
var incidentEdge = [new ClipVertex(), new ClipVertex()];
b2Collision.FindIncidentEdge(incidentEdge, poly1, edge1, poly2);
var count1 = poly1.m_vertexCount;
var vert1s = poly1.m_vertices;
var v11 = vert1s[edge1];
var v12 = edge1 + 1 < count1 ? vert1s[edge1+1] : vert1s[0];
//var dv = b2Math.SubtractVV(v12, v11);
var dvX = v12.x - v11.x;
var dvY = v12.y - v11.y;
//var sideNormal = b2Math.b2MulMV(poly1.m_R, b2Math.SubtractVV(v12, v11));
var sideNormalX = v12.x - v11.x;
var sideNormalY = v12.y - v11.y;
var tX = sideNormalX;
var tMat = poly1.m_R;
sideNormalX = tMat.col1.x * tX + tMat.col2.x * sideNormalY;
sideNormalY = tMat.col1.y * tX + tMat.col2.y * sideNormalY;
// ^^^^ sideNormal.MulM(poly1.m_R);
var invLength = 1.0 / Math.sqrt(sideNormalX*sideNormalX + sideNormalY*sideNormalY);
sideNormalX *= invLength;
sideNormalY *= invLength;
// ^^^^ sideNormal.Normalize();
//var frontNormal = b2Math.b2CrossVF(sideNormal, 1.0);
var frontNormalX = sideNormalX;
var frontNormalY = sideNormalY;
tX = frontNormalX;
frontNormalX = frontNormalY;
frontNormalY = -tX;
// ^^^^ frontNormal.CrossVF(1.0);
// Expanded for performance
//v11 = b2Math.AddVV(poly1.m_position, b2Math.b2MulMV(poly1.m_R, v11));
var v11X = v11.x;
var v11Y = v11.y;
tX = v11X;
tMat = poly1.m_R;
v11X = tMat.col1.x * tX + tMat.col2.x * v11Y;
v11Y = tMat.col1.y * tX + tMat.col2.y * v11Y;
// ^^^^ v11.MulM(poly1.m_R);
v11X += poly1.m_position.x;
v11Y += poly1.m_position.y;
//v12 = b2Math.AddVV(poly1.m_position, b2Math.b2MulMV(poly1.m_R, v12));
var v12X = v12.x;
var v12Y = v12.y;
tX = v12X;
tMat = poly1.m_R;
v12X = tMat.col1.x * tX + tMat.col2.x * v12Y;
v12Y = tMat.col1.y * tX + tMat.col2.y * v12Y;
// ^^^^ v12.MulM(poly1.m_R);
v12X += poly1.m_position.x;
v12Y += poly1.m_position.y;
//var frontOffset = b2Math.b2Dot(frontNormal, v11);
var frontOffset = frontNormalX * v11X + frontNormalY * v11Y;
//var sideOffset1 = -b2Math.b2Dot(sideNormal, v11);
var sideOffset1 = -(sideNormalX * v11X + sideNormalY * v11Y);
//var sideOffset2 = b2Math.b2Dot(sideNormal, v12);
var sideOffset2 = sideNormalX * v12X + sideNormalY * v12Y;
// Clip incident edge against extruded edge1 side edges.
var clipPoints1 = [new ClipVertex(), new ClipVertex()];
var clipPoints2 = [new ClipVertex(), new ClipVertex()];
var np = 0;
// Clip to box side 1
b2Collision.b2CollidePolyTempVec.Set(-sideNormalX, -sideNormalY);
np = b2Collision.ClipSegmentToLine(clipPoints1, incidentEdge, b2Collision.b2CollidePolyTempVec, sideOffset1);
if (np < 2)
return;
// Clip to negative box side 1
b2Collision.b2CollidePolyTempVec.Set(sideNormalX, sideNormalY);
np = b2Collision.ClipSegmentToLine(clipPoints2, clipPoints1, b2Collision.b2CollidePolyTempVec, sideOffset2);
if (np < 2)
return;
// Now clipPoints2 contains the clipped points.
if (flip){
manifold.normal.Set(-frontNormalX, -frontNormalY);
}
else{
manifold.normal.Set(frontNormalX, frontNormalY);
}
// ^^^^ manifold.normal = flip ? frontNormal.Negative() : frontNormal;
var pointCount = 0;
for (var i = 0; i < b2Settings.b2_maxManifoldPoints; ++i)
{
//var separation = b2Math.b2Dot(frontNormal, clipPoints2[i].v) - frontOffset;
var tVec = clipPoints2[i].v;
var separation = (frontNormalX * tVec.x + frontNormalY * tVec.y) - frontOffset;
if (separation <= 0.0 || conservative == true)
{
var cp = manifold.points[ pointCount ];
cp.separation = separation;
cp.position.SetV( clipPoints2[i].v );
cp.id.Set( clipPoints2[i].id );
cp.id.features.flip = flip;
++pointCount;
}
}
manifold.pointCount = pointCount;
};
b2Collision.b2CollideCircle = function(manifold, circle1, circle2, conservative)
{
manifold.pointCount = 0;
//var d = b2Math.SubtractVV(circle2.m_position, circle1.m_position);
var dX = circle2.m_position.x - circle1.m_position.x;
var dY = circle2.m_position.y - circle1.m_position.y;
//var distSqr = b2Math.b2Dot(d, d);
var distSqr = dX * dX + dY * dY;
var radiusSum = circle1.m_radius + circle2.m_radius;
if (distSqr > radiusSum * radiusSum && conservative == false)
{
return;
}
var separation;
if (distSqr < Number.MIN_VALUE)
{
separation = -radiusSum;
manifold.normal.Set(0.0, 1.0);
}
else
{
var dist = Math.sqrt(distSqr);
separation = dist - radiusSum;
var a = 1.0 / dist;
manifold.normal.x = a * dX;
manifold.normal.y = a * dY;
}
manifold.pointCount = 1;
var tPoint = manifold.points[0];
tPoint.id.set_key(0);
tPoint.separation = separation;
//tPoint.position = b2Math.SubtractVV(circle2.m_position, b2Math.MulFV(circle2.m_radius, manifold.normal));
tPoint.position.x = circle2.m_position.x - (circle2.m_radius * manifold.normal.x);
tPoint.position.y = circle2.m_position.y - (circle2.m_radius * manifold.normal.y);
};
b2Collision.b2CollidePolyAndCircle = function(manifold, poly, circle, conservative)
{
manifold.pointCount = 0;
var tPoint;
var dX;
var dY;
// Compute circle position in the frame of the polygon.
//var xLocal = b2Math.b2MulTMV(poly.m_R, b2Math.SubtractVV(circle.m_position, poly.m_position));
var xLocalX = circle.m_position.x - poly.m_position.x;
var xLocalY = circle.m_position.y - poly.m_position.y;
var tMat = poly.m_R;
var tX = xLocalX * tMat.col1.x + xLocalY * tMat.col1.y;
xLocalY = xLocalX * tMat.col2.x + xLocalY * tMat.col2.y;
xLocalX = tX;
var dist;
// Find the min separating edge.
var normalIndex = 0;
var separation = -Number.MAX_VALUE;
var radius = circle.m_radius;
for (var i = 0; i < poly.m_vertexCount; ++i)
{
//var s = b2Math.b2Dot(poly.m_normals[i], b2Math.SubtractVV(xLocal, poly.m_vertices[i]));
var s = poly.m_normals[i].x * (xLocalX-poly.m_vertices[i].x) + poly.m_normals[i].y * (xLocalY-poly.m_vertices[i].y);
if (s > radius)
{
// Early out.
return;
}
if (s > separation)
{
separation = s;
normalIndex = i;
}
}
// If the center is inside the polygon ...
if (separation < Number.MIN_VALUE)
{
manifold.pointCount = 1;
//manifold.normal = b2Math.b2MulMV(poly.m_R, poly.m_normals[normalIndex]);
var tVec = poly.m_normals[normalIndex];
manifold.normal.x = tMat.col1.x * tVec.x + tMat.col2.x * tVec.y;
manifold.normal.y = tMat.col1.y * tVec.x + tMat.col2.y * tVec.y;
tPoint = manifold.points[0];
tPoint.id.features.incidentEdge = normalIndex;
tPoint.id.features.incidentVertex = b2Collision.b2_nullFeature;
tPoint.id.features.referenceFace = b2Collision.b2_nullFeature;
tPoint.id.features.flip = 0;
tPoint.position.x = circle.m_position.x - radius * manifold.normal.x;
tPoint.position.y = circle.m_position.y - radius * manifold.normal.y;
//tPoint.position = b2Math.SubtractVV(circle.m_position , b2Math.MulFV(radius , manifold.normal));
tPoint.separation = separation - radius;
return;
}
// Project the circle center onto the edge segment.
var vertIndex1 = normalIndex;
var vertIndex2 = vertIndex1 + 1 < poly.m_vertexCount ? vertIndex1 + 1 : 0;
//var e = b2Math.SubtractVV(poly.m_vertices[vertIndex2] , poly.m_vertices[vertIndex1]);
var eX = poly.m_vertices[vertIndex2].x - poly.m_vertices[vertIndex1].x;
var eY = poly.m_vertices[vertIndex2].y - poly.m_vertices[vertIndex1].y;
//var length = e.Normalize();
var length = Math.sqrt(eX*eX + eY*eY);
eX /= length;
eY /= length;
// If the edge length is zero ...
if (length < Number.MIN_VALUE)
{
//d = b2Math.SubtractVV(xLocal , poly.m_vertices[vertIndex1]);
dX = xLocalX - poly.m_vertices[vertIndex1].x;
dY = xLocalY - poly.m_vertices[vertIndex1].y;
//dist = d.Normalize();
dist = Math.sqrt(dX*dX + dY*dY);
dX /= dist;
dY /= dist;
if (dist > radius)
{
return;
}
manifold.pointCount = 1;
//manifold.normal = b2Math.b2MulMV(poly.m_R, d);
manifold.normal.Set(tMat.col1.x * dX + tMat.col2.x * dY, tMat.col1.y * dX + tMat.col2.y * dY);
tPoint = manifold.points[0];
tPoint.id.features.incidentEdge = b2Collision.b2_nullFeature;
tPoint.id.features.incidentVertex = vertIndex1;
tPoint.id.features.referenceFace = b2Collision.b2_nullFeature;
tPoint.id.features.flip = 0;
//tPoint.position = b2Math.SubtractVV(circle.m_position , b2Math.MulFV(radius , manifold.normal));
tPoint.position.x = circle.m_position.x - radius * manifold.normal.x;
tPoint.position.y = circle.m_position.y - radius * manifold.normal.y;
tPoint.separation = dist - radius;
return;
}
// Project the center onto the edge.
//var u = b2Math.b2Dot(b2Math.SubtractVV(xLocal , poly.m_vertices[vertIndex1]) , e);
var u = (xLocalX-poly.m_vertices[vertIndex1].x) * eX + (xLocalY-poly.m_vertices[vertIndex1].y) * eY;
tPoint = manifold.points[0];
tPoint.id.features.incidentEdge = b2Collision.b2_nullFeature;
tPoint.id.features.incidentVertex = b2Collision.b2_nullFeature;
tPoint.id.features.referenceFace = b2Collision.b2_nullFeature;
tPoint.id.features.flip = 0;
var pX, pY;
if (u <= 0.0)
{
pX = poly.m_vertices[vertIndex1].x;
pY = poly.m_vertices[vertIndex1].y;
tPoint.id.features.incidentVertex = vertIndex1;
}
else if (u >= length)
{
pX = poly.m_vertices[vertIndex2].x;
pY = poly.m_vertices[vertIndex2].y;
tPoint.id.features.incidentVertex = vertIndex2;
}
else
{
//p = b2Math.AddVV(poly.m_vertices[vertIndex1] , b2Math.MulFV(u, e));
pX = eX * u + poly.m_vertices[vertIndex1].x;
pY = eY * u + poly.m_vertices[vertIndex1].y;
tPoint.id.features.incidentEdge = vertIndex1;
}
//d = b2Math.SubtractVV(xLocal , p);
dX = xLocalX - pX;
dY = xLocalY - pY;
//dist = d.Normalize();
dist = Math.sqrt(dX*dX + dY*dY);
dX /= dist;
dY /= dist;
if (dist > radius)
{
return;
}
manifold.pointCount = 1;
//manifold.normal = b2Math.b2MulMV(poly.m_R, d);
manifold.normal.Set(tMat.col1.x * dX + tMat.col2.x * dY, tMat.col1.y * dX + tMat.col2.y * dY);
//tPoint.position = b2Math.SubtractVV(circle.m_position , b2Math.MulFV(radius , manifold.normal));
tPoint.position.x = circle.m_position.x - radius * manifold.normal.x;
tPoint.position.y = circle.m_position.y - radius * manifold.normal.y;
tPoint.separation = dist - radius;
};
b2Collision.b2TestOverlap = function(a, b)
{
var t1 = b.minVertex;
var t2 = a.maxVertex;
//d1 = b2Math.SubtractVV(b.minVertex, a.maxVertex);
var d1X = t1.x - t2.x;
var d1Y = t1.y - t2.y;
//d2 = b2Math.SubtractVV(a.minVertex, b.maxVertex);
t1 = a.minVertex;
t2 = b.maxVertex;
var d2X = t1.x - t2.x;
var d2Y = t1.y - t2.y;
if (d1X > 0.0 || d1Y > 0.0)
return false;
if (d2X > 0.0 || d2Y > 0.0)
return false;
return true;
};